Explore ATT&CK Data Sources#


Goals:#

  • Access ATT&CK data sources in STIX format via a public TAXII server

  • Learn to interact with ATT&CK data all at once

  • Explore and idenfity patterns in the data retrieved

  • Learn more about ATT&CK data sources

Import ATT&CK API Client#

from attackcti import attack_client

Import Extra Libraries#

from pandas import *
import numpy as np
import json

import altair as alt
alt.renderers.enable('default')

import itertools

import logging
logging.getLogger('taxii2client').setLevel(logging.CRITICAL)

Initialize ATT&CK Client Class#

lift = attack_client()

Get All Techniques#

all_techniques = lift.get_techniques()

Convert Techniques to Dataframe and Update Techniques Objects#

Normalizing semi-structured JSON data into a flat table via pandas.io.json.json_normalize

temp_list = []
for t in all_techniques:
    matrix_name = t['external_references'][0]['source_name']
    technique_number = t['external_references'][0]['external_id']
    if 'x_mitre_data_sources' in t.keys():
        data_sources = list(set([ds.split(':')[0] for ds in t['x_mitre_data_sources']]))
        t = t.new_version(x_mitre_data_sources = data_sources)
    t = t.new_version(matrix = matrix_name)
    t = t.new_version(technique_id = technique_number)
    temp_list.append(json.loads(t.serialize()))
techniques = pandas.json_normalize(temp_list)
techniques.rename(columns = {'x_mitre_platforms':'platform', 'kill_chain_phases':'tactic', 'name':'technique', 'x_mitre_data_sources':'data_sources'}, inplace = True)
techniques = techniques.reindex(['matrix','platform','tactic','technique','technique_id','data_sources'], axis=1)
techniques.head()
matrix platform tactic technique technique_id data_sources
0 mitre-attack [macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Resource Forking T1564.009 [Command, Process, File]
1 mitre-attack [Windows, Linux, macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Downgrade Attack T1562.010 [Process, Command]
2 mitre-attack [macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Login Items T1547.015 [Process, File]
3 mitre-attack [macOS, Linux, Windows] [{'kill_chain_name': 'mitre-attack', 'phase_na... Reflective Code Loading T1620 [Module, Process, Script]
4 mitre-attack [IaaS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Cloud Storage Object Discovery T1619 [Cloud Storage]
print('A total of ',len(techniques),' techniques')
A total of  736  techniques

Techniques Per Matrix#

Using altair python library we can start showing a few charts stacking the number of techniques with or without data sources. Reference: https://altair-viz.github.io/

data = techniques
data_2 = data.groupby(['matrix'])['technique'].count()
data_3 = data_2.to_frame().reset_index()
data_3
matrix technique
0 mitre-attack 566
1 mitre-ics-attack 78
2 mitre-mobile-attack 92
alt.Chart(data_3).mark_bar().encode(x='technique', y='matrix', color='matrix').properties(height = 200)

Techniques With and Without Data Sources#

data_source_distribution = pandas.DataFrame({
    'Techniques': ['Without DS','With DS'],
    'Count of Techniques': [techniques['data_sources'].isna().sum(),techniques['data_sources'].notna().sum()]})
bars = alt.Chart(data_source_distribution).mark_bar().encode(x='Techniques',y='Count of Techniques',color='Techniques').properties(width=200,height=300)
text = bars.mark_text(align='center',baseline='middle',dx=0,dy=-5).encode(text='Count of Techniques')
bars + text

What is the distribution of techniques based on ATT&CK Matrix?

data = techniques
data['Count_DS'] = data['data_sources'].str.len()
data['Ind_DS'] = np.where(data['Count_DS']>0,'With DS','Without DS')
data_2 = data.groupby(['matrix','Ind_DS'])['technique'].count()
data_3 = data_2.to_frame().reset_index()
data_3
matrix Ind_DS technique
0 mitre-attack With DS 520
1 mitre-attack Without DS 46
2 mitre-ics-attack With DS 63
3 mitre-ics-attack Without DS 15
4 mitre-mobile-attack Without DS 92
alt.Chart(data_3).mark_bar().encode(x='technique', y='Ind_DS', color='matrix').properties(height = 200)

What are those mitre-attack techniques without data sources?

data[(data['matrix']=='mitre-attack') & (data['Ind_DS']=='Without DS')][0:5]
matrix platform tactic technique technique_id data_sources Count_DS Ind_DS
58 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Vulnerabilities T1588.006 NaN NaN Without DS
66 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Purchase Technical Data T1597.002 NaN NaN Without DS
67 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Threat Intel Vendors T1597.001 NaN NaN Without DS
68 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Search Closed Sources T1597 NaN NaN Without DS
69 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Scan Databases T1596.005 NaN NaN Without DS

Techniques without data sources#

techniques_without_data_sources=techniques[techniques.data_sources.isnull()].reset_index(drop=True)
techniques_without_data_sources.head()
matrix platform tactic technique technique_id data_sources Count_DS Ind_DS
0 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Vulnerabilities T1588.006 NaN NaN Without DS
1 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Purchase Technical Data T1597.002 NaN NaN Without DS
2 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Threat Intel Vendors T1597.001 NaN NaN Without DS
3 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Search Closed Sources T1597 NaN NaN Without DS
4 mitre-attack [PRE] [{'kill_chain_name': 'mitre-attack', 'phase_na... Scan Databases T1596.005 NaN NaN Without DS
print('There are ',techniques['data_sources'].isna().sum(),' techniques without data sources (',"{0:.0%}".format(techniques['data_sources'].isna().sum()/len(techniques)),' of ',len(techniques),' techniques)')
There are  153  techniques without data sources ( 21%  of  736  techniques)

Techniques With Data Sources#

techniques_with_data_sources=techniques[techniques.data_sources.notnull()].reset_index(drop=True)
techniques_with_data_sources.head()
matrix platform tactic technique technique_id data_sources Count_DS Ind_DS
0 mitre-attack [macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Resource Forking T1564.009 [Command, Process, File] 3.0 With DS
1 mitre-attack [Windows, Linux, macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Downgrade Attack T1562.010 [Process, Command] 2.0 With DS
2 mitre-attack [macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Login Items T1547.015 [Process, File] 2.0 With DS
3 mitre-attack [macOS, Linux, Windows] [{'kill_chain_name': 'mitre-attack', 'phase_na... Reflective Code Loading T1620 [Module, Process, Script] 3.0 With DS
4 mitre-attack [IaaS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Cloud Storage Object Discovery T1619 [Cloud Storage] 1.0 With DS
print('There are ',techniques['data_sources'].notna().sum(),' techniques with data sources (',"{0:.0%}".format(techniques['data_sources'].notna().sum()/len(techniques)),' of ',len(techniques),' techniques)')
There are  583  techniques with data sources ( 79%  of  736  techniques)

Grouping Techniques With Data Sources By Matrix#

Let’s create a graph to represent the number of techniques per matrix:

matrix_distribution = pandas.DataFrame({
    'Matrix': list(techniques_with_data_sources.groupby(['matrix'])['matrix'].count().keys()),
    'Count of Techniques': techniques_with_data_sources.groupby(['matrix'])['matrix'].count().tolist()})
bars = alt.Chart(matrix_distribution).mark_bar().encode(y='Matrix',x='Count of Techniques').properties(width=300,height=100)
text = bars.mark_text(align='center',baseline='middle',dx=10,dy=0).encode(text='Count of Techniques')
bars + text

All the techniques belong to mitre-attack matrix which is the main Enterprise matrix. Reference: https://attack.mitre.org/wiki/Main_Page

Grouping Techniques With Data Sources by Platform#

First, we need to split the platform column values because a technique might be mapped to more than one platform

techniques_platform=techniques_with_data_sources

attributes_1 = ['platform'] # In attributes we are going to indicate the name of the columns that we need to split

for a in attributes_1:
    s = techniques_platform.apply(lambda x: pandas.Series(x[a]),axis=1).stack().reset_index(level=1, drop=True)
    # "s" is going to be a column of a frame with every value of the list inside each cell of the column "a"
    s.name = a
    # We name "s" with the same name of "a".
    techniques_platform=techniques_platform.drop(a, axis=1).join(s).reset_index(drop=True)
    # We drop the column "a" from "techniques_platform", and then join "techniques_platform" with "s"

# Let's re-arrange the columns from general to specific
techniques_platform_2=techniques_platform.reindex(['matrix','platform','tactic','technique','technique_id','data_sources'], axis=1)

We can now show techniques with data sources mapped to one platform at the time

techniques_platform_2.head()
matrix platform tactic technique technique_id data_sources
0 mitre-attack macOS [{'kill_chain_name': 'mitre-attack', 'phase_na... Resource Forking T1564.009 [Command, Process, File]
1 mitre-attack Windows [{'kill_chain_name': 'mitre-attack', 'phase_na... Downgrade Attack T1562.010 [Process, Command]
2 mitre-attack Linux [{'kill_chain_name': 'mitre-attack', 'phase_na... Downgrade Attack T1562.010 [Process, Command]
3 mitre-attack macOS [{'kill_chain_name': 'mitre-attack', 'phase_na... Downgrade Attack T1562.010 [Process, Command]
4 mitre-attack macOS [{'kill_chain_name': 'mitre-attack', 'phase_na... Login Items T1547.015 [Process, File]

Let’s create a visualization to show the number of techniques grouped by platform:

platform_distribution = pandas.DataFrame({
    'Platform': list(techniques_platform_2.groupby(['platform'])['platform'].count().keys()),
    'Count of Techniques': techniques_platform_2.groupby(['platform'])['platform'].count().tolist()})
bars = alt.Chart(platform_distribution,height=300).mark_bar().encode(x ='Platform',y='Count of Techniques',color='Platform').properties(width=200)
text = bars.mark_text(align='center',baseline='middle',dx=0,dy=-5).encode(text='Count of Techniques')
bars + text

In the bar chart above we can see that there are more techniques with data sources mapped to the Windows platform.

Defende-evasion and Persistence are tactics with the highest nummber of techniques with data sources

Grouping Techniques With Data Sources by Data Source#

We need to split the data source column values because a technique might be mapped to more than one data source:

techniques_data_source=techniques_with_data_sources

attributes_3 = ['data_sources'] # In attributes we are going to indicate the name of the columns that we need to split

for a in attributes_3:
    s = techniques_data_source.apply(lambda x: pandas.Series(x[a]),axis=1).stack().reset_index(level=1, drop=True)
    # "s" is going to be a column of a frame with every value of the list inside each cell of the column "a"
    s.name = a
    # We name "s" with the same name of "a".
    techniques_data_source = techniques_data_source.drop(a, axis=1).join(s).reset_index(drop=True)
    # We drop the column "a" from "techniques_data_source", and then join "techniques_data_source" with "s"

# Let's re-arrange the columns from general to specific
techniques_data_source_2 = techniques_data_source.reindex(['matrix','platform','tactic','technique','technique_id','data_sources'], axis=1)

# We are going to edit some names inside the dataframe to improve the consistency:
techniques_data_source_3 = techniques_data_source_2.replace(['Process monitoring','Application logs'],['Process Monitoring','Application Logs'])

We can now show techniques with data sources mapped to one data source at the time

techniques_data_source_3.head()
matrix platform tactic technique technique_id data_sources
0 mitre-attack [macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Resource Forking T1564.009 Command
1 mitre-attack [macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Resource Forking T1564.009 Process
2 mitre-attack [macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Resource Forking T1564.009 File
3 mitre-attack [Windows, Linux, macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Downgrade Attack T1562.010 Process
4 mitre-attack [Windows, Linux, macOS] [{'kill_chain_name': 'mitre-attack', 'phase_na... Downgrade Attack T1562.010 Command

Let’s create a visualization to show the number of techniques grouped by data sources:

data_source_distribution = pandas.DataFrame({
    'Data Source': list(techniques_data_source_3.groupby(['data_sources'])['data_sources'].count().keys()),
    'Count of Techniques': techniques_data_source_3.groupby(['data_sources'])['data_sources'].count().tolist()})
bars = alt.Chart(data_source_distribution,width=800,height=300).mark_bar().encode(x ='Data Source',y='Count of Techniques',color='Data Source').properties(width=1200)
text = bars.mark_text(align='center',baseline='middle',dx=0,dy=-5).encode(text='Count of Techniques')
bars + text

A few interesting things from the bar chart above:

  • Process Monitoring, File Monitoring, and Process Command-line parameters are the Data Sources with the highest number of techniques

  • There are some data source names that include string references to Windows such as PowerShell, Windows and wmi

Most Relevant Groups Of Data Sources Per Technique#

Number Of Data Sources Per Technique#

Although identifying the data sources with the highest number of techniques is a good start, they usually do not work alone. You might be collecting Process Monitoring already but you might be still missing a lot of context from a data perspective.

data_source_distribution_2 = pandas.DataFrame({
    'Techniques': list(techniques_data_source_3.groupby(['technique'])['technique'].count().keys()),
    'Count of Data Sources': techniques_data_source_3.groupby(['technique'])['technique'].count().tolist()})

data_source_distribution_3 = pandas.DataFrame({
    'Number of Data Sources': list(data_source_distribution_2.groupby(['Count of Data Sources'])['Count of Data Sources'].count().keys()),
    'Count of Techniques': data_source_distribution_2.groupby(['Count of Data Sources'])['Count of Data Sources'].count().tolist()})

bars = alt.Chart(data_source_distribution_3).mark_bar().encode(x ='Number of Data Sources',y='Count of Techniques').properties(width=500)
text = bars.mark_text(align='center',baseline='middle',dx=0,dy=-5).encode(text='Count of Techniques')
bars + text

The image above shows you the number data sources needed per techniques according to ATT&CK:

  • There are 71 techniques that require 3 data sources as enough context to validate the detection of them according to ATT&CK

  • Only one technique has 12 data sources

  • One data source only applies to 19 techniques

Let’s create subsets of data sources with the data source column defining and using a python function:

# https://stackoverflow.com/questions/26332412/python-recursive-function-to-display-all-subsets-of-given-set
def subs(l):
    res = []
    for i in range(1, len(l) + 1):
        for combo in itertools.combinations(l, i):
            res.append(list(combo))
    return res

Before applying the function, we need to use lowercase data sources names and sort data sources names to improve consistency:

df = techniques_with_data_sources[['data_sources']]
for index, row in df.iterrows():
    row["data_sources"]=[x.lower() for x in row["data_sources"]]
    row["data_sources"].sort()
df.head()
data_sources
0 [command, file, process]
1 [command, process]
2 [file, process]
3 [module, process, script]
4 [cloud storage]

Let’s apply the function and split the subsets column:

df['subsets']=df['data_sources'].apply(subs)
<ipython-input-32-9765a9dc0b2f>:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df['subsets']=df['data_sources'].apply(subs)
df.head()
data_sources subsets
0 [command, file, process] [[command], [file], [process], [command, file]...
1 [command, process] [[command], [process], [command, process]]
2 [file, process] [[file], [process], [file, process]]
3 [module, process, script] [[module], [process], [script], [module, proce...
4 [cloud storage] [[cloud storage]]

We need to split the subsets column values:

techniques_with_data_sources_preview = df
attributes_4 = ['subsets']

for a in attributes_4:
    s = techniques_with_data_sources_preview.apply(lambda x: pandas.Series(x[a]),axis=1).stack().reset_index(level=1, drop=True)
    s.name = a
    techniques_with_data_sources_preview = techniques_with_data_sources_preview.drop(a, axis=1).join(s).reset_index(drop=True)
    
techniques_with_data_sources_subsets = techniques_with_data_sources_preview.reindex(['data_sources','subsets'], axis=1)
techniques_with_data_sources_subsets.head()
data_sources subsets
0 [command, file, process] [command]
1 [command, file, process] [file]
2 [command, file, process] [process]
3 [command, file, process] [command, file]
4 [command, file, process] [command, process]

Let’s add three columns to analyse the dataframe: subsets_name (Changing Lists to Strings), subsets_number_elements ( Number of data sources per subset) and number_data_sources_per_technique

techniques_with_data_sources_subsets['subsets_name']=techniques_with_data_sources_subsets['subsets'].apply(lambda x: ','.join(map(str, x)))
techniques_with_data_sources_subsets['subsets_number_elements']=techniques_with_data_sources_subsets['subsets'].str.len()
techniques_with_data_sources_subsets['number_data_sources_per_technique']=techniques_with_data_sources_subsets['data_sources'].str.len()
techniques_with_data_sources_subsets.head()
data_sources subsets subsets_name subsets_number_elements number_data_sources_per_technique
0 [command, file, process] [command] command 1 3
1 [command, file, process] [file] file 1 3
2 [command, file, process] [process] process 1 3
3 [command, file, process] [command, file] command,file 2 3
4 [command, file, process] [command, process] command,process 2 3

As it was described above, we need to find grups pf data sources, so we are going to filter out all the subsets with only one data source:

subsets = techniques_with_data_sources_subsets

subsets_ok=subsets[subsets.subsets_number_elements != 1]
subsets_ok.head()
data_sources subsets subsets_name subsets_number_elements number_data_sources_per_technique
3 [command, file, process] [command, file] command,file 2 3
4 [command, file, process] [command, process] command,process 2 3
5 [command, file, process] [file, process] file,process 2 3
6 [command, file, process] [command, file, process] command,file,process 3 3
9 [command, process] [command, process] command,process 2 2

Finally, we calculate the most relevant groups of data sources (Top 15):

subsets_graph = subsets_ok.groupby(['subsets_name'])['subsets_name'].count().to_frame(name='subsets_count').sort_values(by='subsets_count',ascending=False)[0:15]
subsets_graph
subsets_count
subsets_name
command,process 206
command,file 131
file,process 118
command,file,process 90
command,windows registry 60
process,windows registry 59
command,process,windows registry 53
application log,network traffic 48
command,network traffic 45
network traffic,process 44
module,process 44
file,network traffic 39
file,windows registry 37
file,process,windows registry 33
command,module 31
subsets_graph_2 = pandas.DataFrame({
    'Data Sources': list(subsets_graph.index),
    'Count of Techniques': subsets_graph['subsets_count'].tolist()})

bars = alt.Chart(subsets_graph_2).mark_bar().encode(x ='Data Sources', y ='Count of Techniques', color='Data Sources').properties(width=500)
text = bars.mark_text(align='center',baseline='middle',dx= 0,dy=-5).encode(text='Count of Techniques')
bars + text

Group (Process Monitoring - Process Command-line parameters) is the is the group of data sources with the highest number of techniques. This group of data sources are suggested to hunt 78 techniques

Let’s Split all the Information About Techniques With Data Sources Defined: Matrix, Platform, Tactic and Data Source#

Let’s split all the relevant columns of the dataframe:

techniques_data = techniques_with_data_sources

attributes = ['platform','tactic','data_sources'] # In attributes we are going to indicate the name of the columns that we need to split

for a in attributes:
    s = techniques_data.apply(lambda x: pandas.Series(x[a]),axis=1).stack().reset_index(level=1, drop=True)
    # "s" is going to be a column of a frame with every value of the list inside each cell of the column "a"
    s.name = a
    # We name "s" with the same name of "a".
    techniques_data=techniques_data.drop(a, axis=1).join(s).reset_index(drop=True)
    # We drop the column "a" from "techniques_data", and then join "techniques_data" with "s"

# Let's re-arrange the columns from general to specific
techniques_data_2=techniques_data.reindex(['matrix','platform','tactic','technique','technique_id','data_sources'], axis=1)

# We are going to edit some names inside the dataframe to improve the consistency:
techniques_data_3 = techniques_data_2.replace(['Process monitoring','Application logs'],['Process Monitoring','Application Logs'])

techniques_data_3.head()
matrix platform tactic technique technique_id data_sources
0 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... Resource Forking T1564.009 Command
1 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... Resource Forking T1564.009 Process
2 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... Resource Forking T1564.009 File
3 mitre-attack Windows {'kill_chain_name': 'mitre-attack', 'phase_nam... Downgrade Attack T1562.010 Process
4 mitre-attack Windows {'kill_chain_name': 'mitre-attack', 'phase_nam... Downgrade Attack T1562.010 Command

Do you remember data sources names with a reference to Windows? After splitting the dataframe by platforms, tactics and data sources, are there any macOC or linux techniques that consider windows data sources? Let’s identify those rows:

# After splitting the rows of the dataframe, there are some values that relate windows data sources with platforms like linux and masOS.
# We need to identify those rows
conditions = [(techniques_data_3['platform']=='Linux')&(techniques_data_3['data_sources'].str.contains('windows',case=False)== True),
             (techniques_data_3['platform']=='macOS')&(techniques_data_3['data_sources'].str.contains('windows',case=False)== True),
             (techniques_data_3['platform']=='Linux')&(techniques_data_3['data_sources'].str.contains('powershell',case=False)== True),
             (techniques_data_3['platform']=='macOS')&(techniques_data_3['data_sources'].str.contains('powershell',case=False)== True),
             (techniques_data_3['platform']=='Linux')&(techniques_data_3['data_sources'].str.contains('wmi',case=False)== True),
             (techniques_data_3['platform']=='macOS')&(techniques_data_3['data_sources'].str.contains('wmi',case=False)== True)]
# In conditions we indicate a logical test

choices = ['NO OK','NO OK','NO OK','NO OK','NO OK','NO OK']
# In choices, we indicate the result when the logical test is true

techniques_data_3['Validation'] = np.select(conditions,choices,default='OK')
# We add a column "Validation" to "techniques_data_3" with the result of the logical test. The default value is going to be "OK"

What is the inconsistent data?

techniques_analysis_data_no_ok = techniques_data_3[techniques_data_3.Validation == 'NO OK']
# Finally, we are filtering all the values with NO OK

techniques_analysis_data_no_ok.head()
matrix platform tactic technique technique_id data_sources Validation
31 mitre-attack Linux {'kill_chain_name': 'mitre-attack', 'phase_nam... System Language Discovery T1614.001 Windows Registry NO OK
34 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... System Language Discovery T1614.001 Windows Registry NO OK
68 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... Code Signing Policy Modification T1553.006 Windows Registry NO OK
335 mitre-attack Linux {'kill_chain_name': 'mitre-attack', 'phase_nam... Run Virtual Instance T1564.006 Windows Registry NO OK
340 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... Run Virtual Instance T1564.006 Windows Registry NO OK
print('There are ',len(techniques_analysis_data_no_ok),' rows with inconsistent data')
There are  85  rows with inconsistent data

What is the impact of this inconsistent data from a platform and data sources perspective?

df = techniques_with_data_sources

attributes = ['platform','data_sources']

for a in attributes:
    s = df.apply(lambda x: pandas.Series(x[a]),axis=1).stack().reset_index(level=1, drop=True)
    s.name = a
    df=df.drop(a, axis=1).join(s).reset_index(drop=True)
    
df_2=df.reindex(['matrix','platform','tactic','technique','technique_id','data_sources'], axis=1)
df_3 = df_2.replace(['Process monitoring','Application logs'],['Process Monitoring','Application Logs'])

conditions = [(df_3['data_sources'].str.contains('windows',case=False)== True),
              (df_3['data_sources'].str.contains('powershell',case=False)== True),
              (df_3['data_sources'].str.contains('wmi',case=False)== True)]

choices = ['Windows','Windows','Windows']

df_3['Validation'] = np.select(conditions,choices,default='Other')
df_3['Num_Tech'] = 1
df_4 = df_3[df_3.Validation == 'Windows']
df_5 = df_4.groupby(['data_sources','platform'])['technique'].nunique()
df_6 = df_5.to_frame().reset_index()
alt.Chart(df_6).mark_bar().encode(x=alt.X('technique', stack="normalize"),    y='data_sources',    color='platform').properties(height=200)

There are techniques that consider Windows Error Reporting, Windows Registry, and Windows event logs as data sources and they also consider platforms like Linux and masOS. We do not need to consider this rows because those data sources can only be managed at a Windows environment. These are the techniques that we should not consider in our data base:

techniques_analysis_data_no_ok[['technique','data_sources']].drop_duplicates().sort_values(by='data_sources',ascending=True)
technique data_sources
2558 Event Triggered Execution WMI
31 System Language Discovery Windows Registry
3911 Input Capture Windows Registry
3818 Indicator Removal on Host Windows Registry
3543 Two-Factor Authentication Interception Windows Registry
3374 Browser Extensions Windows Registry
3123 Service Stop Windows Registry
3108 Inhibit System Recovery Windows Registry
2700 Create or Modify System Process Windows Registry
2560 Event Triggered Execution Windows Registry
2519 Boot or Logon Autostart Execution Windows Registry
2241 Abuse Elevation Control Mechanism Windows Registry
2084 Unsecured Credentials Windows Registry
2007 Subvert Trust Controls Windows Registry
4103 Boot or Logon Initialization Scripts Windows Registry
1815 Keylogging Windows Registry
1692 Adversary-in-the-Middle Windows Registry
1396 Impair Defenses Windows Registry
1350 Disable or Modify Tools Windows Registry
1322 Disable or Modify System Firewall Windows Registry
1313 Install Root Certificate Windows Registry
1177 Hide Artifacts Windows Registry
951 System Services Windows Registry
831 Hijack Execution Flow Windows Registry
730 Hidden Users Windows Registry
415 Indicator Blocking Windows Registry
348 Hidden File System Windows Registry
335 Run Virtual Instance Windows Registry
68 Code Signing Policy Modification Windows Registry
1740 Modify Authentication Process Windows Registry
4286 OS Credential Dumping Windows Registry

Without considering this inconsistent data, the final dataframe is:

techniques_analysis_data_ok = techniques_data_3[techniques_data_3.Validation == 'OK']
techniques_analysis_data_ok.head()
matrix platform tactic technique technique_id data_sources Validation
0 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... Resource Forking T1564.009 Command OK
1 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... Resource Forking T1564.009 Process OK
2 mitre-attack macOS {'kill_chain_name': 'mitre-attack', 'phase_nam... Resource Forking T1564.009 File OK
3 mitre-attack Windows {'kill_chain_name': 'mitre-attack', 'phase_nam... Downgrade Attack T1562.010 Process OK
4 mitre-attack Windows {'kill_chain_name': 'mitre-attack', 'phase_nam... Downgrade Attack T1562.010 Command OK
print('There are ',len(techniques_analysis_data_ok),' rows of data that you can play with')
There are  4703  rows of data that you can play with

Getting Techniques by Data Sources#

This function gets techniques’ information that includes specific data sources

data_source = 'PROCESS'
results = lift.get_techniques_by_data_sources(data_source)
len(results)
280
type(results)
list
results2 = lift.get_techniques_by_data_sources('pRoceSS','commAnd')
len(results2)
344
results2[1]
AttackPattern(type='attack-pattern', id='attack-pattern--824add00-99a1-4b15-9a2d-6c5683b7b497', created_by_ref='identity--c78cb6e5-0c4b-4611-8297-d1b8b55e40b5', created='2021-10-08T14:06:28.212Z', modified='2021-10-15T00:48:06.723Z', name='Downgrade Attack', description='Adversaries may downgrade or use a version of system features that may be outdated, vulnerable, and/or does not support updated security controls such as logging. For example, [PowerShell](https://attack.mitre.org/techniques/T1059/001) versions 5+ includes Script Block Logging (SBL) which can record executed script content. However, adversaries may attempt to execute a previous version of PowerShell that does not support SBL with the intent to [Impair Defenses](https://attack.mitre.org/techniques/T1562) while running malicious scripts that may have otherwise been detected.(Citation: CrowdStrike BGH Ransomware 2021)(Citation: Mandiant BYOL 2018)\n\nAdversaries may downgrade and use less-secure versions of various features of a system, such as [Command and Scripting Interpreter](https://attack.mitre.org/techniques/T1059)s or even network protocols that can be abused to enable [Adversary-in-the-Middle](https://attack.mitre.org/techniques/T1557).(Citation: Praetorian TLS Downgrade Attack 2014)', kill_chain_phases=[KillChainPhase(kill_chain_name='mitre-attack', phase_name='defense-evasion')], revoked=False, external_references=[ExternalReference(source_name='mitre-attack', url='https://attack.mitre.org/techniques/T1562/010', external_id='T1562.010'), ExternalReference(source_name='CrowdStrike BGH Ransomware 2021', description='Falcon Complete Team. (2021, May 11). Response When Minutes Matter: Rising Up Against Ransomware. Retrieved October 8, 2021.', url='https://www.crowdstrike.com/blog/how-falcon-complete-stopped-a-big-game-hunting-ransomware-attack/'), ExternalReference(source_name='Mandiant BYOL 2018', description='Kirk, N. (2018, June 18). Bring Your Own Land (BYOL) – A Novel Red Teaming Technique. Retrieved October 8, 2021.', url='https://www.mandiant.com/resources/bring-your-own-land-novel-red-teaming-technique'), ExternalReference(source_name='Praetorian TLS Downgrade Attack 2014', description='Praetorian. (2014, August 19). Man-in-the-Middle TLS Protocol Downgrade Attack. Retrieved October 8, 2021.', url='https://www.praetorian.com/blog/man-in-the-middle-tls-ssl-protocol-downgrade-attack/')], object_marking_refs=['marking-definition--fa42a846-8d90-4e51-bc29-71d5b4802168'], x_mitre_data_sources=['Command: Command Execution', 'Process: Process Metadata', 'Process: Process Creation'], x_mitre_detection='Monitor for commands or other activity that may be indicative of attempts to abuse older or deprecated technologies (ex: <code>powershell –v 2</code>). Also monitor for other abnormal events, such as execution of and/or processes spawning from a version of a tool that is not expected in the environment.', x_mitre_is_subtechnique=True, x_mitre_permissions_required=['User'], x_mitre_platforms=['Windows', 'Linux', 'macOS'], x_mitre_version='1.0')